

Summary of Questions and Answers of on-line Briefing Session on New Technologies and Business Development Strategy of the Medium-Term Management Plan (2021-2025), held April 20, 2021, Summary

Explanators: Mr. Kenichi Tominaga, GM of the Next-Generation Technology & Application Division (T-NEXT)

Mr. Hiroshi Sato, Plant Solutions Division

Mr. Toshiyuki Koga, Plant Solutions Division

1. General

Questions	Answers
How much percentage of share does TOYO target in SAF	The expected market size is written from a macro perspective. We would like to focus on what our customers
and fuel ammonia markets?	are interested in, whether TOYO can contribute to meeting customers' need, and demands are with power
	supply or fuel ammonia and so on. In any event we would like to work together with our customers & partners
	to create new markets and new value chains in order to realize carbon neutrality. As a result, we believe that
	we will gain market share accordingly.

2.SAF (Sustainable Aviation Fuel) Business

Questions	Answers
Do you think about biomass feedstock from a woody	As of today, we are targeting woody biomass and have proven technology.
biomass?	It is important for us to discuss the best candidate in which regions the SAF plant should be built on, in Japan
Are you sure if the feedstock of biomass can keep on	or somewhere overseas including the logistics aspect with partners and trading companies that have
sustainably being supplied?	conducted demonstration experiments. In future wood-based waste materials can also be used.
As for the woody biomass imported from abroad, what do	We will consider how it is optimal to minimize CO2 emission for the entire value chain, including the Scope 3
you think of that there is an objection CO2 is generated	when biomass feedstock to be supplied from abroad.
even on the way importing from abroad?	

With regard to SAF, the target producing cost 100 yen per	As described on page 7 of the presentation, the current producing cost of SAF is two to four times as expensive
litter is shown in the presentation. Tell us how much is the	as that of current jet fuel, which is given by IATA and associations. In order to realize cost reductions, it is
current cost level? And what are the critical hurdles for	necessary to build a value chain that includes large-scale of plants and raw material procurement. There are
cutting it down to the target level 100 yen per litter?	large plants in the United States, the United Kingdom, and elsewhere that are planned or constructed. It could
	be the sample of our way forward, we can see how producing costs can be reduced as progress.
As far as the Japan domestic biomass power plant market	Compared to the United States and other countries, which are rich in thinned wood, the construction of plants
is concerned, it could not have realized without subsidies	in Japan is difficult, but it is necessary to establish a Japan domestic value chain from the viewpoint of
(Feed-in Tariff law). In this sense, SAF seems to be also	providing a stable supply of SAF to the Japanese aviation industry. The Government of Japan has a similar view,
difficult without any assistance of the government. What is	and the issue is how to build social mechanisms such as carbon pricing. If we don't do anything, the Japanese
your idea?	airlines may no longer be able to fly to Europe.
Some companies have already made SAF in Europe and	There is no technical difference. There are several projects planned and some of them are under construction
U.S. who are the first-mover. What is the difference	in Europe and the United States. It is not necessarily that we definitely build SAF plant in Japan. We have to
between theirs and Japan domestic value chain?	discuss the best location for SAF production, through the establishment of a SAF supply system through the
	establishment of a business entity, and the establishment of a value chain that can procure raw materials, etc.
What is the difference when SAF is viewed as a total	In Europe, SAF from waste cooking oil has already been in the market. However, considering the cost of
ecosystem? In Europe, a social system for collecting waste	transportation from Europe to Japan, it won't be competitive in Japan market. Therefore, it is meaningful to
oil has begun to be established. How do you think of your	consider producing SAF in Japan and some countries close to Japan. Then it is expected that there will be an
disadvantage against them?	economic advantage.

3. Fuel Ammonia Business

Questions	Answers
Although fuel ammonia is said to be co-fired at a coal-fired	Technologically, 20% of co-firing is confirmed. The current challenge is to raise the level to 100% burning with
power plant, is it difficult to burn it stably even at the	ammonia. Burner and boiler vendors are demonstrating those goals.
demonstration level?	As pointed out the stabilization of combustion is one of the challenges. On the other hand, it would be
	necessary to supply 14 million tons/year fuel ammonia, if replacing fuel with 20% ammonia co-firing at all
	coal-fired power plants in Japan. In this case, the demand for large quantities of fuel ammonia will accelerate
	the current roadmap of the Government of Japan.
How much capital investment is required to upgrade the	Small upgrade is required, such as replacement of the burner equipment and store ammonia. On the other
facilities, once ammonia is mixed with existing power	hand, the existing major equipment like power plant and boiler body can be handled without any changes.
generation facilities fueled by heavy oil or coal by 20 %?	
On page 15, it is said that there are many inquiries from	It is difficult to answer to your query at this stage because each discussion with customers and partners is
various regions regarding fuel ammonia. I would like to ask	ongoing for development. We will actively disclose information as soon as we reach the stage of publication.
you any information which can be disclosed today.	
In the process of abolishing coal-fired power generation, I	As shown on page 14, the current cost of ammonia is in the range of 20 yen per Nm3 in hydrogen equivalent.
personally have doubt that ammonia will be needed for	The Ammonia Council in Japan has also set up the goal is to reach the less than 20 yen in early 2030s. On the
100 million tons in the future on the assumption that coal	other hand, hydrogen target is at the level of 50 yen in 2030 and 30 yen in 2050 at the same terms and
will continue to be co-fired. Does anybody think about it	conditions, and there is a huge cost difference in between ammonia vs hydrogen. Ammonia is currently under
would be better to develop hydrogen directly?	active debate as it can be lowered to near the level of LNG. Furthermore, from the perspective of carbon
In addition, it seems that ammonia is used for co-firing in	neutrality, since LNG emits CO2 when burning, meanwhile ammonia does not emit CO2, which has been
gas turbines. If this happens, LNG may be a good alternate.	recognized as one solution.
Please explain how ammonia is really needed.	Referring to the report dated February 8, 2021 of the Council for the Introduction of Fuel Ammonia in Japan
	(conducted by METI), it is clearly indicated that the cost comparison between hydrogen and ammonia is very
	huge, with the proviso "as on today". Under the same conditions, transportation cost for hydrogen to Japan is
	162 yen per Nm3, and ammonia is 2.3 yen per Nm3, so the two digits are different. We believe that even if we

reduce the cost of transporting hydrogen over a period of two to three decades, the difference will not be
zero. Therefore, given the realistic achievement of carbon neutrality in 2050, we believe that ammonia can be
fully utilized during the energy transition.

4.CO2-EOR and CCS

Questions	Answers
With regards to CO2-EOR of P.19-20, it seems that TOYO's	As Sub-Surface Engineering Company, Baker Hughes, Halliburton, and Schlumberger are three of the largest
competitiveness rely on collaboration with Baker Hughes'	firms in the field. TOYO does not stick to Baker Hughes. On page 22, we have started the collaboration with
technology. Please explain opportunities and risks, such as	Baker Hughes since the Southeast Asian project. For before projects than this, TOYO by ourselves undertook
whether other competitors possess more technical	subsurface design to some extent. Because of the clients' request, TOYO needs the deeper knowledge and
capabilities and whether there are companies other than	speed in subsurface portion, we started the collaboration with Baker Hughes, who is the first priority position.
TOYO that cooperate with Baker.	TOYO can co-work with other subsurface engineering firms.
TOYO has announced that TOYO signed a comprehensive	8 Rivers has technology for removing impurities in the gas. Mainly for H2S and CO2 Removal process are their
agreement with U.S company 8 Rivers. Could you please	strong area, typically shown in the flow diagram at the well in P.19. We expect to reach the target by utilizing 8
tell us the intent of the agreement and how it is related to	Rivers' technology in economical operation for removing H2S (hydrogen sulfide) and CO2 in more economical.
TOYO's new technologies and business development	
strategy?	
On P.21, there are more than 50 CO2-EOR projects. How	As the basis, we would like to share the consensus that successful EOR can be achieved only by joint work by
much is TOYO's share in the market?	subsurface and surface technologies. In the past, the International Oil Company (IOC) managed the entire
Or could you give us a hint to judge TOYO's position?	project and managed all of the technologies related to EOR.
	The change came at the time when the oil price exceeded \$100/barrel. The Oil Production Country's National
	Oil Company (NOC) started to materialize EOR by themselves. To apply them in advanced technologies with a
	short period, NOC sought engineering companies who could simultaneously cover both subsurface and
	surface technologies. Usually, this type of the work would be operated by General Engineering Service
	Agreement (GESA). In the world, Approximate 10 engineering groups can cover this type of agreement.
	fortunately, TOYO is only Japanese company in this category.
	As both IOC and NOC show the interest to EOR at the initial stage, and as Oil Production Government will
	approve the field development by overall developing plan (Primary to EOR) with harmonizing environment.
	Thus, oil Company prefers to the engineering firm capable of overall plan development.

Is it correct to understand that CO2-EOR differs from	As shown in the presentation, blue ammonia production cost is relatively more expensive than normal gray
ordinary CCS because not only storage CO2, oil can be	ammonia because of expensive CCS CAPEX cost, and of CO2 credits price is not high enough. To promote CO2
extracted as by-products from injecting CO2?	to store Reservoir, CO2-EOR would seems to be an initial preferable action for IOC/NOC on the points of more
	crude oil production with injected CO2 storage in the reservoir. It can reduce CAPEX for CO2 Injection with
	smooth introduction of CCS. When the reservoir is filled with CO2, the field is moved to CCS without additional
	CAPEX.
	In addition, there are 2 points to explain the difference between CCS & CO2-EOR.
	#1. From formation points of view, Water Reservoir is fitting for CCS, and oil field (Gas, Oil, Water Reservoir
	Combination) for CO2-EOR.
	Because of concept, CO2 Injection target in CCS is aquifer (Water) formation mainly "above" oil formation. As
	per the nature, it is difficult to monitor injected CO2 dissolved in water under high pressure and by existence
	flow in the aquifer reservoir. On the other hand, in case of CO2-EOR, the injected CO2 to oil field "deeper
	than" the aquifer, which means much less possibility to CO2 leaking to the ground.
	#2. Small pores in the oil reservoir, shown on P.18, can capture CO2. By this nature, CO2 stores in pores even at
	the CO2-EOR stage. Illustration on P.17 shows the water reservoir below the oil reservoir, which is the same
	structure as the oil reservoir. This shows the capability of CO2 capture. Therefore, if the injection layer of CO2
	after the EOR is extended to this water reservoir, more CO2 can be stored. This is TOYO's approach to oil
	reservoirs and oil fields. Therefore, the oil field is considered the most ideal for the CCS purpose.
CCS is cheaper because it is shallow but there is a risk of	It is difficult to say that CCS is cheaper only because from the view points of the depth. The oil/gas production
CO2 leakage. On the other hand, although CO2-EOR is	field, where CO2-EOR is applied, originally has facilities for producing crude oil. Drilling to oil reservoir (Deep
deep, it is payable if an income of the oil generated as by-	Well) is costly, but investment at the start of operation. Accordingly, when CO2-EOR is applied to oil fields,
products is also counted. Is this correct understanding?	majority of facilities already exists. We expect less initial investment cost for CO2-EOR rather than pure CCS
	project.

Can CO2-EOR technology be used for coal reservoir?	Yes, it can also be applicable to coal reservoir. In the past, we used to recover coal gas by injecting CO2 into the
	coal reservoir.
(Note)	

• In some cases, the contents have been reordered to help readers to naturally be understood.